
Automating Qt GUI Tests
10 Pitfalls And How To Avoid Them

Qt Developer Days 2012

by Reginald Stadlbauer

About me

 Name: Reginald Stadlbauer
 Company: froglogic GmbH, vendor of Squish for Qt and Squish Coco
 Position: co-founder and CEO
 Worked as Software Engineer at Trolltech and the KDE project

Overview

 Types of Testing
 Why Automate?
 Pitfalls 1-10
 Demo based on “Rohde & Schwarz PowerViewerPlus”

Types of Testing

 Unit Testing
 Performance Testing
 ...
 Functional GUI Testing

- Black/Gray Box Testing
- Assume user's point of view
- Automate to spot regressions
- Combinable with profiling, coverage and other analysis and monitoring tools

Why Automate?

 Faster
- Get results quicker
- Run more tests in the same time

 Trivial to replay in different configurations
 Reliable, reproducible and repeatable
 Relieve testers from monotonous tasks

But...

 Automating GUI tests is not trivial
 Following best practices is vital for the success of automated GUI tests

1. Rely on capture and replay

 Produces massive test scripts
 Not readable
 Not maintainable
 No code re-use possible
 Brittle against changes in the UI

 Solution: Scripting & Refactoring

2. Use primitive macro language

 Limited to small set of features
 No way to “break out”
 No way to utilize 3rd party libraries (database access, etc.)
 No way to deal with dynamic tests

 Solution: Use scripting solution for test automation

Scripted Approach vs. Capture & Replay

3. Rely on screen coordinates

 Addresses screen positions and not UI controls
 Breaks with UI layout changes
 Depends on GUI style and platform
 Scripts hard to understand

 Solution: Address objects based on properties

4. Rely on screen captures / OCR

 No knowledge of GUI controls
 Too much heuristics
 Depends on irrelevant data (colors, fonts, etc.)
 Many incorrect fails / errors

 Solution: Identify on and compare object properties

5. Rely on “Windows” or “Accessibility” test tools

 Only “knows” standard Windows controls
 Cannot drill into Qt / QML / Quick / WebKit controls
 Object identification based on limited amount of properties
 Not cross-platform

 Solution: Use a tool which understands Qt controls

Example: Widget Recognition Options

Very BAD:

 MouseClick(132, 367)

BAD:

 MouseClick('Tree', 30, 136)

BAD:

 MouseClick(

 FindObjByImg('item-image.png'))

GOOD:

 ClickItem('Tree', 'Event')

6. Tests embedded in application

 Tempting to test API rather than GUI
 Application crash or freeze not handled well
 Can only test one application per test case
 Not suitable for remote testing (embedded devices, mobile)
 Modifies application

 Solution: Run test in a separate process

7. Rely on unique Qt objecName

 Burden for developers
 Not realistically doable if testing is introduced later
 Need uniqueness checking

 Solution: Use multi-property naming

8. Rely on AUT's object hierarchy

 Long and unreadable names
 Relies on application internal “helper widgets”
 Small layout changes breaks naming

 Solution: Use multi-property naming

9. Create tests “on the side”

 Development resources are already restricted
 There is always “one more important dev task”
 Easy to delay “until tomorrow”

 Solution: Dedicated resource for testing

10. Setup automation “when ready”

 Nobody runs the tests and sees the fails/errors
 Tests will become unmaintained and not work anymore
 Tests will be forgotten

 Solution: First task: set up automation, then start creating tests

11. There are more...

 Thinking there are only 10 pitfalls :-)

Squish for Qt Demo on Rohde & Schwarz PVP

 Discuss Record & Replay
 Verifications
 Object naming
 Refactoring & Scripting
 Screenshot Verifications
 Keyword driven testing

 Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

