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Overview

 Types of Testing
 Why Automate?
 Pitfalls 1-10
 Demo based on “Rohde & Schwarz PowerViewerPlus”



Types of Testing

 Unit Testing
 Performance Testing
 ...
 Functional GUI Testing

- Black/Gray Box Testing
- Assume user's point of view
- Automate to spot regressions
- Combinable with profiling, coverage and other analysis and monitoring tools



Why Automate?

 Faster
- Get results quicker
- Run more tests in the same time

 Trivial to replay in different configurations
 Reliable, reproducible and repeatable
 Relieve testers from monotonous tasks



But...

 Automating GUI tests is not trivial
 Following best practices is vital for the success of automated GUI tests



1. Rely on capture and replay

 Produces massive test scripts
 Not readable
 Not maintainable
 No code re-use possible
 Brittle against changes in the UI

 Solution: Scripting & Refactoring



2. Use primitive macro language

 Limited to small set of features
 No way to “break out”
 No way to utilize 3rd party libraries (database access, etc.)
 No way to deal with dynamic tests

 Solution: Use scripting solution for test automation



Scripted Approach vs. Capture & Replay



3. Rely on screen coordinates

 Addresses screen positions and not UI controls
 Breaks with UI layout changes
 Depends on GUI style and platform
 Scripts hard to understand

 Solution: Address objects based on properties



4. Rely on screen captures / OCR

 No knowledge of GUI controls
 Too much heuristics
 Depends on irrelevant data (colors, fonts, etc.)
 Many incorrect fails / errors

 Solution: Identify on and compare object properties



5. Rely on “Windows” or “Accessibility” test tools

 Only “knows” standard Windows controls
 Cannot drill into Qt / QML / Quick / WebKit controls
 Object identification based on limited amount of properties
 Not cross-platform

 Solution: Use a tool which understands Qt controls



Example: Widget Recognition Options

Very BAD:

   MouseClick(132, 367)

BAD:

   MouseClick('Tree', 30, 136)

BAD:

   MouseClick(

     FindObjByImg('item-image.png'))

GOOD:

   ClickItem('Tree', 'Event')



6. Tests embedded in application

 Tempting to test API rather than GUI
 Application crash or freeze not handled well
 Can only test one application per test case
 Not suitable for remote testing (embedded devices, mobile)
 Modifies application

 Solution: Run test in a separate process



7. Rely on unique Qt objecName

 Burden for developers
 Not realistically doable if testing is introduced later
 Need uniqueness checking

 Solution: Use multi-property naming



8. Rely on AUT's object hierarchy

 Long and unreadable names
 Relies on application internal “helper widgets”
 Small layout changes breaks naming

 Solution: Use multi-property naming



9. Create tests “on the side”

 Development resources are already restricted
 There is always “one more important dev task”
 Easy to delay “until tomorrow”

 Solution: Dedicated resource for testing



10. Setup automation “when ready”

 Nobody runs the tests and sees the fails/errors
 Tests will become unmaintained and not work anymore
 Tests will be forgotten

 Solution: First task: set up automation, then start creating tests



11. There are more...

 Thinking there are only 10 pitfalls :-)



Squish for Qt Demo on Rohde & Schwarz PVP

 Discuss Record & Replay
 Verifications
 Object naming
 Refactoring & Scripting
 Screenshot Verifications
 Keyword driven testing

 Q & A
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