
Automating Qt GUI Tests
10 Pitfalls And How To Avoid Them

Qt Developer Days 2012

by Reginald Stadlbauer

About me

 Name: Reginald Stadlbauer
 Company: froglogic GmbH, vendor of Squish for Qt and Squish Coco
 Position: co-founder and CEO
 Worked as Software Engineer at Trolltech and the KDE project

Overview

 Types of Testing
 Why Automate?
 Pitfalls 1-10
 Demo based on “Rohde & Schwarz PowerViewerPlus”

Types of Testing

 Unit Testing
 Performance Testing
 ...
 Functional GUI Testing

- Black/Gray Box Testing
- Assume user's point of view
- Automate to spot regressions
- Combinable with profiling, coverage and other analysis and monitoring tools

Why Automate?

 Faster
- Get results quicker
- Run more tests in the same time

 Trivial to replay in different configurations
 Reliable, reproducible and repeatable
 Relieve testers from monotonous tasks

But...

 Automating GUI tests is not trivial
 Following best practices is vital for the success of automated GUI tests

1. Rely on capture and replay

 Produces massive test scripts
 Not readable
 Not maintainable
 No code re-use possible
 Brittle against changes in the UI

 Solution: Scripting & Refactoring

2. Use primitive macro language

 Limited to small set of features
 No way to “break out”
 No way to utilize 3rd party libraries (database access, etc.)
 No way to deal with dynamic tests

 Solution: Use scripting solution for test automation

Scripted Approach vs. Capture & Replay

3. Rely on screen coordinates

 Addresses screen positions and not UI controls
 Breaks with UI layout changes
 Depends on GUI style and platform
 Scripts hard to understand

 Solution: Address objects based on properties

4. Rely on screen captures / OCR

 No knowledge of GUI controls
 Too much heuristics
 Depends on irrelevant data (colors, fonts, etc.)
 Many incorrect fails / errors

 Solution: Identify on and compare object properties

5. Rely on “Windows” or “Accessibility” test tools

 Only “knows” standard Windows controls
 Cannot drill into Qt / QML / Quick / WebKit controls
 Object identification based on limited amount of properties
 Not cross-platform

 Solution: Use a tool which understands Qt controls

Example: Widget Recognition Options

Very BAD:

 MouseClick(132, 367)

BAD:

 MouseClick('Tree', 30, 136)

BAD:

 MouseClick(

 FindObjByImg('item-image.png'))

GOOD:

 ClickItem('Tree', 'Event')

6. Tests embedded in application

 Tempting to test API rather than GUI
 Application crash or freeze not handled well
 Can only test one application per test case
 Not suitable for remote testing (embedded devices, mobile)
 Modifies application

 Solution: Run test in a separate process

7. Rely on unique Qt objecName

 Burden for developers
 Not realistically doable if testing is introduced later
 Need uniqueness checking

 Solution: Use multi-property naming

8. Rely on AUT's object hierarchy

 Long and unreadable names
 Relies on application internal “helper widgets”
 Small layout changes breaks naming

 Solution: Use multi-property naming

9. Create tests “on the side”

 Development resources are already restricted
 There is always “one more important dev task”
 Easy to delay “until tomorrow”

 Solution: Dedicated resource for testing

10. Setup automation “when ready”

 Nobody runs the tests and sees the fails/errors
 Tests will become unmaintained and not work anymore
 Tests will be forgotten

 Solution: First task: set up automation, then start creating tests

11. There are more...

 Thinking there are only 10 pitfalls :-)

Squish for Qt Demo on Rohde & Schwarz PVP

 Discuss Record & Replay
 Verifications
 Object naming
 Refactoring & Scripting
 Screenshot Verifications
 Keyword driven testing

 Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

